算法 基础教程

算法 高级教程

相似性算法

original icon
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.knowledgedict.com/tutorial/algorithm-intro.html

算法 简介


什么是算法?简而言之,任何定义明确的计算步骤都可称为算法,接受一个或一组值为输入,输出一个或一组值。

算法特征

可以这样理解,算法是用来解决特定问题的一系列步骤(不仅计算机需要算法,我们在日常生活中也在使用算法)。

算法必须具备如下几个重要特性:

  • 输入:一个算法必须有零个或以上输入量。
  • 输出:一个算法应有一个或以上输出量,输出量是算法计算的结果。
  • 明确性:算法的描述必须无歧义,以保证算法的实际执行结果是精确地匹配要求或期望,通常要求实际运行结果是确定的。
  • 有限性:依据图灵的定义,一个算法是能够被任何图灵完备系统模拟的一串运算,而图灵机只有有限个状态、有限个输入符号和有限个转移函数(指令)。而一些定义更规定算法必须在有限个步骤内完成任务。
  • 有效性:又称可行性。能够实现,算法中描述的操作都是可以通过已经实现的基本运算执行有限次来实现。

算法评定

同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度空间复杂度来考虑。

时间复杂度

算法的时间复杂度是指执行算法所需要的计算工作量。

空间复杂度

算法的空间复杂度是指算法需要消耗的内存空间。

算法的方法

针对一个待解决问题,可以根据具体的问题选择不同的模式和方法完成算法的设计。

下面列出了几个算法的常用方法。

递推法

递推是序列计算机中的一种常用算法。它是按照一定的规律来计算序列中的每个项,通常是通过计算机前面的一些项来得出序列中的指定项的值。其思想是把一个复杂的庞大的计算过程转化为简单过程的多次重复,该算法利用了计算机速度快和不知疲倦的机器特点。

递归法

程序调用自身的编程技巧称为递归(recursion)。一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。

递归就是在过程或函数里调用自身。

在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。

穷举法

穷举法,或称为暴力破解法,其基本思路是:对于要解决的问题,列举出它的所有可能的情况,逐个判断有哪些是符合问题所要求的条件,从而得到问题的解。它也常用于对于密码的破译,即将密码进行逐个推算直到找出真正的密码为止。例如一个已知是四位并且全部由数字组成的密码,其可能共有10000种组合,因此最多尝试10000次就能找到正确的密码。理论上利用这种方法可以破解任何一种密码,问题只在于如何缩短试误时间。因此有些人运用计算机来增加效率,有些人辅以字典来缩小密码组合的范围。

贪心算法

贪心算法是一种对某些求最优解问题的更简单、更迅速的设计技术。

用贪心法设计算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,它省去了为找最优解要穷尽所有可能而必须耗费的大量时间,它采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题, 通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。

贪婪算法是一种改进了的分级处理方法,其核心是根据题意选取一种量度标准,然后将这多个输入排成这种量度标准所要求的顺序,按这种顺序一次输入一个量,如果这个输入和当前已构成在这种量度意义下的部分最佳解加在一起不能产生一个可行解,则不把此输入加到这部分解中。这种能够得到某种量度意义下最优解的分级处理方法称为贪婪算法。

对于一个给定的问题,往往可能有好几种量度标准。初看起来,这些量度标准似乎都是可取的,但实际上,用其中的大多数量度标准作贪婪处理所得到该量度意义下的最优解并不是问题的最优解,而是次优解。因此,选择能产生问题最优解的最优量度标准是使用贪婪算法的核心。

一般情况下,要选出最优量度标准并不是一件容易的事,但对某问题能选择出最优量度标准后,用贪婪算法求解则特别有效。

分治法

分治法是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。

分治法所能解决的问题一般具有以下几个特征:

  1. 该问题的规模缩小到一定的程度就可以容易地解决。
  2. 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
  3. 利用该问题分解出的子问题的解可以合并为该问题的解。
  4. 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

动态规划法

动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。

其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解

动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。

动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。

迭代法

迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代法又分为精确迭代和近似迭代。“二分法”和“牛顿迭代法”属于近似迭代法。迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

回溯法

回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

其基本思想是,在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。 若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。 而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

XGBoost 是一个 GBDT 即梯度提升算法的开源实现软件库,是 eXtreme Gradient Boosting 的简写,表示 XG ...
排序算法分为两大类,一是内部排序,即数据记录在内存中进行排序,另一个是外部排序,主要是因排序的数据很大,一次不能容纳全部的排序记录,在排序过 ...
Java 是一种广泛使用的计算机编程语言,拥有跨平台、面向对象、泛型编程的特性,广泛应用于企业级 Web 应用开发和移动应用开发。 ...
查找是在大量的信息中寻找一个特定的信息元素,在计算机应用中,查找是常用的基本运算。折半查找的前提条件是需要有序表顺序存储,对于静态查找表,一 ...
采用了MVT的软件设计模式,即模型(Model),视图(View)和模板(Template)。这套框架是以比利时的吉普赛爵士吉他手Djang ...