NumPy 教程

NumPy 笔记

original icon
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.knowledgedict.com/tutorial/numpy-broadcasting.html

NumPy广播


术语广播是指 NumPy 在算术运算期间处理不同形状的数组的能力。对数组的算术运算通常在相应的元素上进行。如果两个阵列具有完全相同的形状,则这些操作被无缝执行。

示例 1

import numpy as np 

a = np.array([1,2,3,4]) 
b = np.array([10,20,30,40]) 
c = a * b 
print c

输出如下:

[10   40   90   160]

如果两个数组的维数不相同,则元素到元素的操作是不可能的。然而,在 NumPy 中仍然可以对形状不相似的数组进行操作,因为它拥有广播功能。较小的数组会广播到较大数组的大小,以便使它们的形状可兼容。

如果满足以下规则,可以进行广播:

  • ndim较小的数组会在前面追加一个长度为 1 的维度。

  • 输出数组的每个维度的大小是输入数组该维度大小的最大值。

  • 如果输入在每个维度中的大小与输出大小匹配,或其值正好为 1,则在计算中可它。

  • 如果输入的某个维度大小为 1,则该维度中的第一个数据元素将用于该维度的所有计算。

如果上述规则产生有效结果,并且满足以下条件之一,那么数组被称为可广播的

  • 数组拥有相同形状。

  • 数组拥有相同的维数,每个维度拥有相同长度,或者长度为 1。

  • 数组拥有极少的维度,可以在其前面追加长度为 1 的维度,使上述条件成立。

下面的例称展示了广播的示例。

示例 2

import numpy as np 
a = np.array([[0.0,0.0,0.0],[10.0,10.0,10.0],[20.0,20.0,20.0],[30.0,30.0,30.0]]) 
b = np.array([1.0,2.0,3.0])  
print  '第一个数组:'  
print a 
print  '\n'  
print  '第二个数组:'  
print b 
print  '\n'  
print  '第一个数组加第二个数组:'  
print a + b

输出如下:

第一个数组:
[[ 0. 0. 0.]
 [ 10. 10. 10.]
 [ 20. 20. 20.]
 [ 30. 30. 30.]]

第二个数组:
[ 1. 2. 3.]

第一个数组加第二个数组:
[[ 1. 2. 3.]
 [ 11. 12. 13.]
 [ 21. 22. 23.]
 [ 31. 32. 33.]]

下面的图片展示了数组b如何通过广播来与数组a兼容。


下面我将介绍几种不同的方式来实现JavaUDP广播的接收和发送,包括步骤流程和示例代码。###使用Java的原生Socket类实现UDP广播 ...
标准的 Python 发行版不会与 NumPy 模块捆绑在一起。一个轻量级的替代方法是使用流行的 Python 包安装程序 pip 来安装 ...
NumPy,即 Numeric Python 的缩写,是一个优秀的开源科学计算库,并已经成为 Python 科学计算生态系统的重要组成部分。 ...
这里收集了 numpy 开发中常见的问题与相应解答。 ...
以下函数用于对dtype为numpy.string_或numpy.unicode_的数组执行向量化字符串操作。它们基于 Python 内置库 ...