pandas 教程

Pandas 数据结构

Pandas 基本操作

Pandas API

original icon
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.knowledgedict.com/tutorial/pandas-data-structures.html

Pandas数据结构


Pandas处理以下三个数据结构 -

  • 系列(Series)
  • 数据帧(DataFrame)
  • 面板(Panel)

这些数据结构构建在Numpy数组之上,这意味着它们很快。

维数和描述

考虑这些数据结构的最好方法是,较高维数据结构是其较低维数据结构的容器。例如,DataFrameSeries的容器,PanelDataFrame的容器。

数据结构 维数 描述
系列 1 1D 标记均匀数组,大小不变。
数据帧 2 一般2D 标记,大小可变的表结构与潜在的异质类型的列。
面板 3 一般3D 标记,大小可变数组。

构建和处理两个或更多个维数组是一项繁琐的任务,用户在编写函数时要考虑数据集的方向。但是使用Pandas数据结构,减少了用户的思考。

例如,使用表格数据(DataFrame),在语义上更有用于考虑索引(行)和列,而不是轴0和轴1

可变性

所有Pandas数据结构是值可变的(可以更改),除了系列都是大小可变的。系列是大小不变的。

注 - DataFrame被广泛使用,是最重要的数据结构之一。面板使用少得多。

系列

系列是具有均匀数据的一维数组结构。例如,以下系列是整数:10,23,56...的集合。

关键点

  • 均匀数据
  • 尺寸大小不变
  • 数据的值可变

数据帧

数据帧(DataFrame)是一个具有异构数据的二维数组。例如,

姓名 年龄 性别 等级
Maxsu 25 4.45
Katie 34 2.78
Vina 46 3.9
Lia x 女 4.6

上表表示具有整体绩效评级组织的销售团队的数据。数据以行和列表示。每列表示一个属性,每行代表一个人。

列的数据类型

上面数据帧中四列的数据类型如下:

类型
姓名 字符串
年龄 整数
性别 字符串
等级 浮点型

关键点

  • 异构数据
  • 大小可变
  • 数据可变

面板

面板是具有异构数据的三维数据结构。在图形表示中很难表示面板。但是一个面板可以说明为DataFrame的容器。

关键点

  • 异构数据
  • 大小可变
  • 数据可变

MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引 ...
Elasticsearch是一个开源的分布式搜索和分析引擎,用于存储、检索和分析大量的数据。倒排索引由以下几个主要部分组成:*词项表(Ter ...
Pandas对象之间的基本迭代的行为取决于类型。当迭代一个系列时,它被视为数组式,基本迭代产生这些值。其他数据结构,如:DataFrame和 ...
当有了滚动,扩展和ewm对象创建了以后,就有几种方法可以对数据执行聚合。 ...
Pandas 是一款开放源码的 BSD 许可的 Python 库,为 Python 编程语言提供了高性能,易于使用的数据结构和数据分析工具。 ...