时间差(Timedelta)是时间上的差异,以不同的单位来表示。例如:日,小时,分钟,秒。它们可以是正值,也可以是负值。
可以使用各种参数创建Timedelta
对象,如下所示 -
字符串
通过传递字符串,可以创建一个timedelta
对象。参考以下示例代码 -
import pandas as pd
timediff = pd.Timedelta('2 days 2 hours 15 minutes 30 seconds')
print(timediff)
执行上面救命代码,得到以下结果 -
2 days 02:15:30
整数
通过传递一个整数值与指定单位,这样的一个参数也可以用来创建Timedelta
对象。
import pandas as pd
timediff = pd.Timedelta(6,unit='h')
print(timediff)
执行上面救命代码,得到以下结果 -
0 days 06:00:00
数据偏移
例如 - 周,天,小时,分钟,秒,毫秒,微秒,纳秒的数据偏移也可用于构建。
import pandas as pd
timediff = pd.Timedelta(days=2)
print(timediff)
执行上面救命代码,得到以下结果 -
2 days 00:00:00
运算操作
可以在 Series/DataFrames 上执行运算操作,并通过在datetime64 [ns]
系列或在时间戳上减法操作来构造timedelta64 [ns]
系列。参考以下示例代码 -
import pandas as pd
s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D'))
td = pd.Series([ pd.Timedelta(days=i) for i in range(3) ])
df = pd.DataFrame(dict(A = s, B = td))
print(df)
执行上面示例代码,得到以下结果 -
A B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days
相加操作
import pandas as pd
s = pd.Series(pd.date_range('2018-1-1', periods=3, freq='D'))
td = pd.Series([ pd.Timedelta(days=i) for i in range(3) ])
df = pd.DataFrame(dict(A = s, B = td))
df['C']=df['A']+df['B']
print(df)
执行上面示例代码,得到以下结果 -
A B C
0 2018-01-01 0 days 2018-01-01
1 2018-01-02 1 days 2018-01-03
2 2018-01-03 2 days 2018-01-05
相减操作
import pandas as pd
s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D'))
td = pd.Series([ pd.Timedelta(days=i) for i in range(3) ])
df = pd.DataFrame(dict(A = s, B = td))
df['C']=df['A']+df['B']
df['D']=df['C']-df['B']
print(df)
执行上面示例代码,得到以下结果 -
A B C D
0 2018-01-01 0 days 2018-01-01 2018-01-01
1 2018-01-02 1 days 2018-01-03 2018-01-02
2 2018-01-03 2 days 2018-01-05 2018-01-03